Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.771
Filtrar
1.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605039

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Gânglios da Base/fisiologia , Neurônios/fisiologia
2.
J Neural Transm (Vienna) ; 131(4): 359-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456947

RESUMO

The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Potenciais Somatossensoriais Evocados/fisiologia , Núcleo Subtalâmico/fisiologia , Tálamo/fisiologia , Doença de Parkinson/terapia , Eletrodos , Globo Pálido , Eletrodos Implantados
3.
Scand J Pain ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485660

RESUMO

BACKGROUND AND OBJECTIVES: In Parkinson's disease (PD) patients, verbal suggestions have been shown to modulate motor and clinical outcomes in treatment with subthalamic deep brain stimulation (DBS). Furthermore, DBS may alleviate pain in PD. However, it is unknown if verbal suggestions influence DBS' effects on pain. METHODS: Twenty-four people with PD and DBS had stimulation downregulated (80-60 to 20%) and upregulated (from 20-60 to 80%) in a blinded manner on randomized test days: (1) with negative and positive suggestions of pain for down- and upregulation, respectively, and (2) with no suggestions to effect (control). Effects of DBS and verbal suggestions were assessed on ongoing and evoked pain (hypertonic saline injections) via 0-10 numerical rating scales along with motor symptoms, expectations, and blinding. RESULTS: Stimulation did not influence ongoing and evoked pain but influenced motor symptoms in the expected direction. Baseline and experimental pain measures showed no patterns in degree of pain. There was a trend toward negative suggestions increasing pain and positive suggestions decreasing pain. Results show significant differences in identical stimulation with negative vs positive suggestions (60% conditions AUC 38.75 vs 23.32, t(13) = 3.10, p < 0.001). Expectations to pain had small to moderate effects on evoked pain. Patients estimated stimulation level correctly within 10 points. CONCLUSION: Stimulation does not seem to influence ongoing and evoked pain, but verbal suggestions may influence pain levels. Patients appear to be unblinded to stimulation level which is an important consideration for future studies testing DBS in an attempted blind fashion.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Dor
4.
Acta Neurochir (Wien) ; 166(1): 124, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457027

RESUMO

BACKGROUND: In advanced Parkinson's disease (PD), axial symptoms are common and can be debilitating. Although deep brain stimulation (DBS) significantly improves motor symptoms, conventional high-frequency stimulation (HFS) has limited effectiveness in improving axial symptoms. In this study, we investigated the effects on multiple axial symptoms after DBS surgery with three different frequency programming paradigms comprising HFS, low-frequency stimulation (LFS), and variable-frequency stimulation (VFS). METHODS: This study involved PD patients who had significant preoperative axial symptoms and underwent bilateral subthalamic nucleus (STN) DBS. Axial symptoms, motor symptoms, medications, and quality of life were evaluated preoperatively (baseline). One month after surgery, HFS was applied. At 6 months post-surgery, HFS assessments were performed, and HFS was switched to LFS. A further month later, we conducted LFS assessments and switched LFS to VFS. At 8 months after surgery, VFS assessments were performed. RESULTS: Of the 21 PD patients initially enrolled, 16 patients were ultimately included in this study. Regarding HFS, all axial symptoms except for the Berg Balance Scale (p < 0.0001) did not improve compared with the baseline (all p > 0.05). As for LFS and VFS, all axial symptoms improved significantly compared with both the baseline and HFS (all p < 0.05). Moreover, motor symptoms and medications were significantly better than the baseline (all p < 0.05) after using LFS and VFS. Additionally, the quality of life of the PD patients after receiving LFS and VFS was significantly better than at the baseline and with HFS (all p < 0.0001). CONCLUSION: Our findings indicate that HFS is ineffective at improving the majority of axial symptoms in advanced PD. However, both the LFS and VFS programming paradigms exhibit significant improvements in various axial symptoms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/terapia , Qualidade de Vida
5.
Mov Disord ; 39(3): 539-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321526

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or ventral intermediate nucleus (VIM) are established targets for the treatment of Parkinson's disease (PD) or essential tremor (ET), respectively. However, DBS of the zona incerta (ZI) can be effective for both disorders. VIM DBS is assumed to achieve its therapeutic effect via activation of the cerebellothalamic (CBT) pathway, whereas the activation of the hyperdirect (HD) pathway likely plays a role in the mechanisms of STN DBS. Interestingly, HD pathway axons also emit collaterals to the ZI and red nucleus (RN) and the CBT pathway courses nearby to the ZI. OBJECTIVE: The aim was to examine the ability of ZI DBS to mutually activate the HD and CBT pathways in a detailed computational model of human DBS. METHODS: We extended a previous model of the human HD pathway to incorporate axon collaterals to the ZI and RN. The anatomical framework of the model system also included representations of the CBT pathway and internal capsule (IC) fibers of passage. We then performed detailed biophysical simulations to quantify DBS activation of the HD, CBT, and IC pathways with electrodes located in either the STN or ZI. RESULTS: STN DBS and ZI DBS both robustly activated the HD pathway. However, STN DBS was limited by IC activation at higher stimulus amplitudes. Alternatively, ZI DBS avoided IC activation while simultaneously activating the HD and CBT pathways. CONCLUSIONS: From both neuroanatomical and biophysical perspectives, ZI DBS represents an advantageous target for coupled activation of the HD and CBT pathways. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Núcleo Subtalâmico , Zona Incerta , Humanos , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/terapia , Tremor Essencial/terapia
6.
Eur J Neurosci ; 59(7): 1657-1680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38414108

RESUMO

The timescales of the dynamics of a system depend on the combination of the timescales of its components and of its transmission delays between components. Here, we combine experimental stimulation data from 10 studies in macaque monkeys that reveal the timing of excitatory and inhibitory events in the basal ganglia circuit, to estimate its set of transmission delays. In doing so, we reveal possible inconsistencies in the existing data, calling for replications, and we propose two possible sets of transmission delays. We then integrate these delays in a model of the primate basal ganglia that does not rely on direct and indirect pathways' segregation and show that extrastriatal dopaminergic depletion in the external part of the globus pallidus and in the subthalamic nucleus is sufficient to generate ß-band oscillations (in the high part, 20-35 Hz, of the band). More specifically, we show that D2 and D5 dopamine receptors in these nuclei play opposing roles in the emergence of these oscillations, thereby explaining how completely deactivating D5 receptors in the subthalamic nucleus can, paradoxically, cancel oscillations.


Assuntos
Dopamina , Núcleo Subtalâmico , Animais , Haplorrinos , Gânglios da Base/fisiologia , Núcleo Subtalâmico/fisiologia , Globo Pálido/fisiologia
7.
J Neural Eng ; 21(1)2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306713

RESUMO

Objective.The electrode-tissue interface provides the critical path for charge transfer in neurostimulation therapies and exhibits well-established nonlinear properties at high applied currents or voltages. These nonlinear properties may influence the efficacy and safety of applied stimulation but are typically neglected in computational models. In this study, nonlinear behavior of the electrode-tissue interface impedance was incorporated in a computational model of deep brain stimulation (DBS) to simulate the impact on neural activation and safety considerations.Approach.Nonlinear electrode-tissue interface properties were incorporated in a finite element model of DBS electrodesin vitroandin vivo,in the rat subthalamic nucleus, using an iterative approach. The transition point from linear to nonlinear behavior was determined for voltage and current-controlled stimulation. Predicted levels of neural activation during DBS were examined and the region of linear operation of the electrode was compared with the Shannon safety limit.Main results.A clear transition of the electrode-tissue interface impedance to nonlinear behavior was observed for both current and voltage-controlled stimulation. The transition occurred at lower values of activation overpotential for simulatedin vivothanin vitroconditions (91 mV and 165 mV respectively for current-controlled stimulation; 110 mV and 275 mV for voltage-controlled stimulation), corresponding to an applied current of 30µA and 45µA, or voltage of 330 mV at 1 kHz. The onset of nonlinearity occurred at lower values of the overpotential as frequency was increased. Incorporation of nonlinear properties resulted in activation of a higher proportion of neurons under voltage-controlled stimulation. Under current-controlled stimulation, the predicted transition to nonlinear behavior and Faradaic charge transfer at stimulation amplitudes of 30µA, corresponds to a charge density of 2.29µC cm-2and charge of 1.8 nC, well-below the Shannon safety limit.Significance.The results indicate that DBS electrodes may operate within the nonlinear region at clinically relevant stimulation amplitudes. This affects the extent of neural activation under voltage-controlled stimulation and the transition to Faradaic charge transfer for both voltage- and current-controlled stimulation with important implications for targeting of neural populations and the design of safe stimulation protocols.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Animais , Ratos , Estimulação Encefálica Profunda/métodos , Eletrodos , Núcleo Subtalâmico/fisiologia , Neurônios/fisiologia , Impedância Elétrica
8.
J Neural Eng ; 21(1)2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364279

RESUMO

Objective. This study investigated a machine-learning approach to detect the presence of evoked resonant neural activity (ERNA) recorded during deep brain stimulation (DBS) of the subthalamic nucleus (STN) in people with Parkinson's disease.Approach. Seven binary classifiers were trained to distinguish ERNA from the background neural activity using eight different time-domain signal features.Main results. Nested cross-validation revealed a strong classification performance of 99.1% accuracy, with 99.6% specificity and 98.7% sensitivity to detect ERNA. Using a semi-simulated ERNA dataset, the results show that a signal-to-noise ratio of 15 dB is required to maintain a 90% classifier sensitivity. ERNA detection is feasible with an appropriate combination of signal processing, feature extraction and classifier. Future work should consider reducing the computational complexity for use in real-time applications.Significance. The presence of ERNA can be used to indicate the location of a DBS electrode array during implantation surgery. The confidence score of the detector could be useful for assisting clinicians to adjust the position of the DBS electrode array inside/outside the STN.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Eletrodos Implantados
9.
Mov Disord ; 39(4): 684-693, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380765

RESUMO

BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Magnetoencefalografia , Núcleo Subtalâmico , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Magnetoencefalografia/métodos , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Estimulação Encefálica Profunda/métodos , Tremor Essencial/fisiopatologia , Tremor Essencial/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Tálamo/fisiologia , Tálamo/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Núcleos Ventrais do Tálamo/fisiologia , Núcleos Ventrais do Tálamo/fisiopatologia
10.
Sleep Med ; 115: 174-176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367359

RESUMO

BACKGROUND: Restless legs syndrome (RLS) has an increased estimated prevalence in patients with Parkinson's disease (PS). RLS frequently mimics symptoms intrinsic to PD, such as motor restlessness, contributing to making its diagnosis challenging in this population. We report the case of a patient with new-onset RLS following subthalamic deep-brain stimulation (DBS-STN). We assessed symptoms using suggested immobilization test (SIT) with both DBS-STN activated and switched off. CASE DESCRIPTION: A 59-year-old man with idiopathic PD developed disabling RLS following DBS-STN at age 58, with PD onset at 50 manifesting as left arm tremor. Despite improved motor symptoms during the month following surgery, the patient experienced left leg discomfort at rest, transiently alleviated by movements due to an irrepressible urge to move, and worsened at night. Symptoms had no temporal relationship with oral dopa-therapy and disappeared when DBS-STN was deactivated. A 1 h SIT assessed motor behavior with irrepressible urge to move, as well as sensory symptoms by visual analog scale. After 30 m DBS-STN was switched off followed by the appearance of tremor in the left arm while both motor and sensory symptoms of RLS disappeared in the left leg. DISCUSSION: The mechanisms of DBS-STN's impact on RLS remain controversial. We hypothesize the DBS-STN to induce in our patient a hyperdopaminergic tone. DBS-induced and DBS-ameliorated RLS represent interesting conditions to further understand the pathophysiology of RLS. Moreover, the present observation suggests that SIT can be a valuable tool to assess RLS in PD patients before and after DBS-STN in future prospective studies.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Síndrome das Pernas Inquietas , Núcleo Subtalâmico , Masculino , Humanos , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Doença de Parkinson/diagnóstico , Tremor/etiologia , Tremor/terapia , Estimulação Encefálica Profunda/efeitos adversos , Núcleo Subtalâmico/fisiologia
11.
Curr Biol ; 34(3): 655-660.e3, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183986

RESUMO

Deep brain stimulation (DBS) and dopaminergic therapy (DA) are common interventions for Parkinson's disease (PD). Both treatments typically improve patient outcomes, and both can have adverse side effects on decision making (e.g., impulsivity).1,2 Nevertheless, they are thought to act via different mechanisms within basal ganglia circuits.3 Here, we developed and formally evaluated their dissociable predictions within a single cost/benefit effort-based decision-making task. In the same patients, we manipulated DA medication status and subthalamic nucleus (STN) DBS status within and across sessions. Using a series of descriptive and computational modeling analyses of participant choices and their dynamics, we confirm a double dissociation: DA medication asymmetrically altered participants' sensitivities to benefits vs. effort costs of alternative choices (boosting the sensitivity to benefits while simultaneously lowering sensitivity to costs); whereas STN DBS lowered the decision threshold of such choices. To our knowledge, this is the first study to show, using a common modeling framework, a dissociation of DA and DBS within the same participants. As such, this work offers a comprehensive account for how different mechanisms impact decision making, and how impulsive behavior (present in DA-treated patients with PD and DBS patients) may emerge from separate physiological mechanisms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Dopamina/uso terapêutico , Núcleo Subtalâmico/fisiologia , Testes Neuropsicológicos , Doença de Parkinson/terapia , Tomada de Decisões/fisiologia
12.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290848

RESUMO

The subthalamic nucleus (STN) receives cortical inputs via the hyperdirect and indirect pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (Macaca fuscata, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials. We first examined responses to the stimulation of the forelimb regions in the primary motor cortex and/or supplementary motor area. STN neurons with motor cortical inputs were found in the dorsal somatomotor region of the STN. All these STN neurons showed activity changes in Go trials, suggesting their involvement in execution of movements. Part of them exhibited activity changes in Cancel trials and sustained activity during delay periods, suggesting their involvement in cancelation of planed movements and preparation of movements, respectively. The STN neurons rarely showed activity changes in NoGo trials. Go- and Cancel-related activity was selective to the direction of movements, and the selectivity was higher in Cancel trials than in Go trials. Changes in Go- and Cancel-related activity occurred early enough to initiate and cancel movements, respectively. These results suggest that the dorsal somatomotor region of the STN, which receives motor cortical inputs, is involved in preparation and execution of movements and cancelation of planned movements.


Assuntos
Córtex Motor , Núcleo Subtalâmico , Masculino , Feminino , Animais , Haplorrinos , Núcleo Subtalâmico/fisiologia , Gânglios da Base , Córtex Motor/fisiologia , Neurônios/fisiologia
13.
Brain Stimul ; 17(1): 112-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38272256

RESUMO

BACKGROUND: DBS of the subthalamic nucleus (STN) considerably ameliorates cardinal motor symptoms in PD. Reported STN-DBS effects on secondary dysarthric (speech) and dysphonic symptoms (voice), as originating from vocal tract motor dysfunctions, are however inconsistent with rather deleterious outcomes based on post-surgical assessments. OBJECTIVE: To parametrically and intra-operatively investigate the effects of deep brain stimulation (DBS) on perceptual and acoustic speech and voice quality in Parkinson's disease (PD) patients. METHODS: We performed an assessment of instantaneous intra-operative speech and voice quality changes in PD patients (n = 38) elicited by direct STN stimulations with variations of central stimulation features (depth, laterality, and intensity), separately for each hemisphere. RESULTS: First, perceptual assessments across several raters revealed that certain speech and voice symptoms could be improved with STN-DBS, but this seems largely restricted to right STN-DBS. Second, computer-based acoustic analyses of speech and voice features revealed that both left and right STN-DBS could improve dysarthric speech symptoms, but only right STN-DBS can considerably improve dysphonic symptoms, with left STN-DBS being restricted to only affect voice intensity features. Third, several subareas according to stimulation depth and laterality could be identified in the motoric STN proper and close to the associative STN with optimal (and partly suboptimal) stimulation outcomes. Fourth, low-to-medium stimulation intensities showed the most optimal and balanced effects compared to high intensities. CONCLUSIONS: STN-DBS can considerably improve both speech and voice quality based on a carefully arranged stimulation regimen along central stimulation features.


Assuntos
Estimulação Encefálica Profunda , Disfonia , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Fala , Qualidade da Voz/fisiologia , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia
15.
Mov Disord ; 39(1): 192-197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888906

RESUMO

BACKGROUND: Excessive subthalamic nucleus (STN) ß-band (13-35 Hz) synchronized oscillations has garnered interest as a biomarker for characterizing disease state and developing adaptive stimulation systems for Parkinson's disease (PD). OBJECTIVES: To report on a patient with abnormal treatment-responsive modulation in the ß-band. METHODS: We examined STN local field potentials from an externalized deep brain stimulation (DBS) lead while assessing PD motor signs in four conditions (OFF, MEDS, DBS, and MEDS+DBS). RESULTS: The patient presented here exhibited a paradoxical increase in ß power following administration of levodopa and pramipexole (MEDS), but an attenuation in ß power during DBS and MEDS+DBS despite clinical improvement of 50% or greater under all three therapeutic conditions. CONCLUSIONS: This case highlights the need for further study on the role of ß oscillations in the pathophysiology of PD and the importance of personalized approaches to the development of ß or other biomarker-based DBS closed loop algorithms. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Levodopa/uso terapêutico , Biomarcadores
17.
Neural Netw ; 170: 18-31, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972454

RESUMO

During the Deep Brain Stimulation (DBS) surgery for Parkinson's disease (PD), the main goal is to place the permanent stimulating electrode into an area of the brain that becomes pathologically hyperactive. This area, called Subthalamic Nucleus (STN), is small and located deep within the brain. Therefore, the main challenge is the precise localization of the STN region, considering various measurement errors and artifacts. In this paper, we have designed and developed a computer-aided decision support system for neurosurgical DBS surgery. The implementation of this system provides a novel method for calculating the expected position of the stimulating electrode based on the recordings of the electrical activity of brain tissue. The artificial neural network with attention is used to classify the microelectrode recordings and determine the final position of the stimulating electrode within the STN area. Experiments have verified the utility and efficiency of our system. The tests were carried out on many recordings collected during DBS surgeries, giving encouraging results. The experimental results demonstrate that deep learning methods extended with self-attention blocks compete with the other solutions. They provide significant robustness to recording artifacts and improve the accuracy of the stimulating electrode placement.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Microeletrodos , Eletrodos Implantados , Doença de Parkinson/diagnóstico , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/fisiologia
18.
Brain ; 147(2): 472-485, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787488

RESUMO

Postoperative apathy is a frequent symptom in Parkinson's disease patients who have undergone bilateral deep brain stimulation of the subthalamic nucleus. Two main hypotheses for postoperative apathy have been suggested: (i) dopaminergic withdrawal syndrome relative to postoperative dopaminergic drug tapering; and (ii) direct effect of chronic stimulation of the subthalamic nucleus. The primary objective of our study was to describe preoperative and 1-year postoperative apathy in Parkinson's disease patients who underwent chronic bilateral deep brain stimulation of the subthalamic nucleus. We also aimed to identify factors associated with 1-year postoperative apathy considering: (i) preoperative clinical phenotype; (ii) dopaminergic drug management; and (iii) volume of tissue activated within the subthalamic nucleus and the surrounding structures. We investigated a prospective clinical cohort of 367 patients before and 1 year after chronic bilateral deep brain stimulation of the subthalamic nucleus. We assessed apathy using the Lille Apathy Rating Scale and carried out a systematic evaluation of motor, cognitive and behavioural signs. We modelled the volume of tissue activated in 161 patients using the Lead-DBS toolbox and analysed overlaps within motor, cognitive and limbic parts of the subthalamic nucleus. Of the 367 patients, 94 (25.6%) exhibited 1-year postoperative apathy: 67 (18.2%) with 'de novo apathy' and 27 (7.4%) with 'sustained apathy'. We observed disappearance of preoperative apathy in 22 (6.0%) patients, who were classified as having 'reversed apathy'. Lastly, 251 (68.4%) patients had neither preoperative nor postoperative apathy and were classified as having 'no apathy'. We identified preoperative apathy score [odds ratio (OR) 1.16; 95% confidence interval (CI) 1.10, 1.22; P < 0.001], preoperative episodic memory free recall score (OR 0.93; 95% CI 0.88, 0.97; P = 0.003) and 1-year postoperative motor responsiveness (OR 0.98; 95% CI 0.96, 0.99; P = 0.009) as the main factors associated with postoperative apathy. We showed that neither dopaminergic dose reduction nor subthalamic stimulation were associated with postoperative apathy. Patients with 'sustained apathy' had poorer preoperative fronto-striatal cognitive status and a higher preoperative action initiation apathy subscore. In these patients, apathy score and cognitive status worsened postoperatively despite significantly lower reduction in dopamine agonists (P = 0.023), suggesting cognitive dopa-resistant apathy. Patients with 'reversed apathy' benefited from the psychostimulant effect of chronic stimulation of the limbic part of the left subthalamic nucleus (P = 0.043), suggesting motivational apathy. Our results highlight the need for careful preoperative assessment of motivational and cognitive components of apathy as well as executive functions in order to better prevent or manage postoperative apathy.


Assuntos
Apatia , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia , Apatia/fisiologia , Estudos Prospectivos , Estimulação Encefálica Profunda/métodos , Cognição , Resultado do Tratamento
19.
World Neurosurg ; 181: e346-e355, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839566

RESUMO

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease can be performed with intraoperative neurophysiological and radiographic guidance. Conventional T2-weighted magnetic resonance imaging sequences, however, often fail to provide definitive borders of the STN. Novel magnetic resonance imaging sequences, such as susceptibility-weighted imaging (SWI), might better localize the STN borders and facilitate radiographic targeting. We compared the radiographic location of the dorsal and ventral borders of the STN using SWI with intraoperative microelectrode recording (MER) during awake STN-DBS for Parkinson's disease. METHODS: Thirteen consecutive patients who underwent placement of 24 STN-DBS leads for Parkinson's disease were analyzed retrospectively. Preoperative targeting was performed with SWI, and MER data were obtained from intraoperative electrophysiology records. The boundaries of the STN on SWI were identified by a blinded investigator. RESULTS: The final electrode position differed significantly from the planned coordinates in depth but not in length or width, indicating that MER guided the final electrode depth. When we compared the boundaries of the STN by MER and SWI, SWI accurately predicted the entry into the STN but underestimated the length and ventral boundary of the STN by 1.2 mm. This extent of error approximates the span of a DBS contact and could affect the placement of directional contacts within the STN. CONCLUSIONS: MER might continue to have a role in STN-DBS. This could potentially be mitigated by further refinement of imaging protocols to better image the ventral boundary of the STN.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Microeletrodos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/cirurgia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Eletrodos Implantados
20.
Parkinsonism Relat Disord ; 118: 105921, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976978

RESUMO

BACKGROUND: Data on the long-term survival and incidence of disability milestones after subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) is limited. OBJECTIVES: To estimate mortality and assess the frequency/time-to-development of disability milestones (falls, freezing, hallucinations, dementia, and institutionalization) among PD patients post STN-DBS. METHODS: A longitudinal retrospective study of patients undergoing STN-DBS. For mortality, Cox proportional hazards regression analysis was performed. For disease milestones, competing risk analyses were performed and cumulative incidence functions reported. The strength of association between baselines features and event occurrence was calculated based on adjusted hazard ratios. RESULTS: The overall mortality for the 109 patients was 16 % (62.1 ± 21.3 months after surgery). Falls (73 %) and freezing (47 %) were both the earliest (40.4 ± 25.4 and 39.6 ± 28.4 months, respectively) and most frequent milestones. Dementia (34 %) and hallucinations (32 %) soon followed (56.2 ± 21.2 and mean 60.0 ± 20.7 months after surgery, respectively). Higher ADL scores in the OFF state and higher age at surgery were associated with falls, freezing, dementia and institutionalization. CONCLUSIONS: Long-term mortality rate is low after STN-DBS. Disease milestones occur later during the disease course, with motor milestones appearing first and at a higher frequency than cognitive ones.


Assuntos
Estimulação Encefálica Profunda , Demência , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia , Seguimentos , Estudos Retrospectivos , Estimulação Encefálica Profunda/efeitos adversos , Alucinações , Demência/complicações , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...